Stabilizing Quantum Information
نویسنده
چکیده
The algebraic structure underlying all the schemes for quantum information stabilization is argued to be fully contained in the reducibility of the operator algebra describing the interaction with the environment of the coding quantum system. This property amounts to the existence of a non-trivial group of symmetries for the global dynamics. We provide a unified framework which allows us to build sistematically new classes of (non-additive) error correcting codes and noiseless subsystems. Moreover relations between noiseless subsystems (and codes) and decoupling strategies are clarified.
منابع مشابه
Stabilizing qubit coherence via tracking-control
We consider the problem of stabilizing the coherence of a single qubit subject to Markovian decoherence, via the application of a control Hamiltonian, without any additional resources. In this case neither quantum error correction/avoidance, nor dynamical decoupling applies. We show that using tracking-control, i.e., the conditioning of the control field on the state of the qubit, it is possibl...
متن کاملStabilizing distinguishable qubits against spontaneous decay by detected-jump correcting quantum codes.
A new class of error-correcting quantum codes is introduced capable of stabilizing qubits against spontaneous decay arising from couplings to statistically independent reservoirs. These quantum codes are based on the idea of using an embedded quantum code and exploiting the classical information available about which qubit has been affected by the environment. They are immediately relevant for ...
متن کاملDecoherence effects on quantum Fisher information of multi-qubit W states
Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...
متن کاملTopological protection and quantum noiseless subsystems.
Encoding and manipulation of quantum information by means of topological degrees of freedom provides a promising way to achieve natural fault tolerance that is built in at the physical level. We show that this topological approach to quantum information processing is a particular instance of the notion of computation in a noiseless quantum subsystem. The latter then provides the most general co...
متن کاملQuantum reservoir engineering and single qubit cooling
Stabilizing a quantum system in a desired state has important implications in quantum information science. In control engineering, stabilization is usually achieved by the use of feedback. The closed-loop control paradigm consists of measuring the system in a nondestructive manner, analyzing in real-time the measurement output to estimate the dynamical state and finally, calculating a feedback ...
متن کامل